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Electromagnetic reciprocity
3

q Reciprocity: “going the same way backward as forward”.  A reciprocal 
system exhibits the same received-transmitted field ratios when it 
source(s) and detector(s) are exchanged 

⌘ =
Edetect

Etrans

⌘0 =
E0

detect

E0
trans

⌘ = ⌘0 ! Reciprocity

q A reciprocal system has a symmetric scattering matrix
S(P ⇥ P )

a1

a2

a3 a4

aP

bP

b4

b3b2

b1

b = S a

S = ST or Sij = Sji 8(i, j)
Sij = bi/aj |ak=0,k 6=j

Sij = Sij(a1, a2, . . . , aP )

• For linear systems
• For nonlinear systems

q Linear, time-independent, symmetric    and     à reciprocity✏ µ

Source Detector

Detector Source

Etrans Edetect

E0
detect E0

trans



Reciprocity and time-reversal symmetry (TRS)
4

q TRS Reciprocity)

but the converse 
is not true

(e.g. lossy systems) 
TRSq Reciprocity 6)

(P0/4)/(P0/2) = 0.5 = (P0/2)/P0

TRS

TRSB

q Chiral systems are reciprocal q Faraday systems are not reciprocal
System altered on full 
TR, so not useful for 
properly deciding on 
reciprocity

Preserve spin states 
by not flipping      B0✏yx = ✏xy

µyx(B0) = �µxy(B0) ✏yx(B0) = �✏xy(B0)



Electromagnetic nonreciprocity
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q Nonreciprocity: absence of reciprocity! 9(i, j) | Sij 6= Sjior

q Lorentz theorem suggests a few directions in the quest for nonreciprocity 

Ø Magneto-optical materials Ø Nonlinear materials

S(F0) 6= ST (F0)

• External bias: magnetic field
• Linear (strong nonreciprocity)
• Time-invariant (frequency conservation)
• Ferrites, 2D electron gases, etc.
• Require bulky magnets

• Self-biasing (electric field) + spatial 
asymmetry

• Harmonic generation
• Inapplicability of superposition 
• Power dependent (weak nonreciprocity)



Spatio-temporal modulation for nonreciprocity
6

Ø Space-time modulation

• External bias: velocity (~ spatial inversion symmetry breaking)
• Linear (strong nonreciprocity)
• Harmonic & anharmonic generation 
• Optomechanics, electro/acousto-optics, STMMs
• Pulse or periodic, abrupt or smooth medium/wave modulation
• Challenging implementation!

n(x) = n0 + �n cos(KMSx+ !MSt)



Nonreciprocity is different from asymmetric propagation
7

q There is a large confusion in the literature between nonreciprocity and 
asymmetric propagation

Ø But, there is asymmetric propagation

S12(B) 6= S21(B)

Ø System is nonreciprocal        
(can be used as an isolator)

Ø Asymmetric scattering matrix

Ø System is reciprocal (not an isolator)

6==



Time-modulated metasurfaces
8

q Time-modulated meta-atom 

✏(x, y, t) = ✏c(x, y) + �✏(x, y, t)

E(x, y, t) = a1(t)E1(x, y)a2(t)E2(x, y) where r2E1,2(x, y) = �✏c(x, y)
!2
1,2

c2
E1,2(x, y)

q Coupled mode theory

r2E(x, y, t) =
1

c2
@2

@t2
[✏(x, y, t)E(x, y, t)]

Assume EM field is z-polarized. We need to solve  

Assuming small and slow perturbation, i.e. �✏/✏c, �̇✏/!1,2✏c, �̈✏/!
2
1,2✏c ⌧ 1

C12(t) = C
Z

MA
dxdy E⇤

1 (x, y)E2(x, y)�✏(x, y, t)

C21(t) = C
Z

MA
dxdy E1(x, y)E

⇤
2 (x, y)�✏(x, y, t)

Note that      must break spatial symmetry; otherwise�✏

x

y

e.g. �✏ = �(x, y) cos(⌦t+ �)

!1

!2

⌦ ei� e�i�=

meta-atom

ȧ1(t) = (i!1 � �1)a1(t) + iC12(t)a2(t)

ȧ2(t) = (i!2 � �2)a2(t) + iC21(t)a1(t)

C12 = C21 = 0



Harmonic modulation of the complex dielectric function
9

q Harmonic time modulated perturbation

�✏(x, y, t) = �R(x, y) cos(⌦t+ �R) + i�I(x, y) sin(⌦t+ �I)

) C12(t) = C+
12e

i⌦t + C�
12e

�i⌦t

q Coupling to external ports:

C±
12 =

C
2

Z

MA
drE⇤

1E2[�Re
±i�R ± �Ie

±i�I ]

!1

!2

sin1

sin2

sout2

sout1 (t) = ⇠1s
in
1 (t) + 1a1(t)

sout2 (t) = ⇠2s
in
2 (t) + 2a2(t)

a1,2(t) = aH1,2(t) + aP1,2(t)

sout1

ȧ1(t) = (i!1 � �1)a1(t) + i[C+
12e

i⌦t + C�
12e

�i⌦t]a2(t) + 1s
in
1 (t)

ȧ2(t) = (i!2 � �2)a2(t) + i[C+
21e

i⌦t + C�
21e

�i⌦t]a1(t) + 2s
in
2 (t)



Homogeneous solution: Floquet theory
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(!2 � !1 � ⌦)2 + 4C+
21C

�
12 > 0

q Floquet theory for time-periodic systems:
ẋ(t) = O(t)x(t)

O(t) = O(t+ T )
x(t) = e�iµtp(t)

p(t) = p(t+ T )

with
) µ quasi� energywhere

The quasi-energies are solutions to det[U(T, 0)� e�iµT I] = 0 x(T ) = U(T, 0)x(0)

q For our modulated meta-atom

When , both quasi-energies are real, and hence aH,±
1,2 (t) ! 0

Otherwise,        has an imaginary component à exponential growth in time (gain)µ±

µ± =
�(!1 + !2)±

q
(!2 � !1 � ⌦)2 + 4C+

12C
�
21

2aH,±
1,2 (t) ⇠ e�iµ±t e��1,2t

Im(�✏)

) C+
12 = �(C�

21)
⇤

|C�
21||C�

21|
Imµ

�! = 0�! 6= 0
�!

2

�! = |!2 � !1 � ⌦|
Imµ± = ±1

2

q
(�!)2 � 4|C�

21|2

q Example: modulate only



Nonreciprocal metasurfaces
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When C�
12 6= C+

21 ) System is nonreciprocal

• “Partial” nonreciprocity • “Full” nonreciprocity�R 6= 0 , �I = 0 �R = �I and �R = �I

S12 ⇠ e�i� S21 ⇠ e+i�6= S12 = 0 S21 ⇠ e+i�6=

ȧ1(t) = (i!1 � �1)a1(t) + iC�
12e

�i⌦ta2(t)� 1s
in
1 (t)

ȧ2(t) = (i!2 � �2)a2(t) + iC+
21e

i⌦ta1(t)� 2s
in
2 (t)

where we used the rotating-wave approximation (discard fast counter-rotating terms) 

sin,out1 (t) = S in,out
1 ei!t sin,out2 (t) = S in,out

2 ei(!+⌦)t
q In steady state

aP1 (t) = A1 ei!t a2(t) = A2 ei(!+⌦)t

C�
12 = (C+

21)
⇤ C�

12 = 0C+
21 6= 0

D = [i(! � !1) + �1][i(! + ⌦� !2) + �2] + C�
12C

+
21

q Output fields Sout
1 =

⇢
⇠1 +

2
1[i(! � !2) + �2]

D

�
S in
1 +

i12

D
C�

12S in
2

Sout
2 =

⇢
⇠2 +

2
2[i(! � !1) + �1]

D

�
S in
2 +

i12

D
C+

21S in
1

aH,±
1,2 (t) ! 0



Dynamic (nonreciprocal) focusing with STMMs
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q Phase distribution over the meta-surface                   � = �(x)

à dynamical wavefront control using spatio-temporal modulated metasurfaces

q Unperturbed meta-atom !1 = 6.8 GHz !2 = 9.9 GHz

⌦ = !2 � !1

�/✏c = 0.1
xf = �5 cm xf = +5 cm

17 cm

12
cm

!in = !1
!out = !2✏(x, y, t) = ✏c + �(y) cos[⌦t+ �(x)]

✏c = 12.25

q STMM with parabolic phase distribution

copper

w2

w1

�(x) =
!in

c

q
(x� xf )2 + y2f

h1

h2 h1 = 3 mm
h2 = 10 mm
w1 = 2 mm
w2 = 8 mm

�(y) = � ✓(y � h2/2)

x

y



Dynamic (nonreciprocal) beam steering with STMMs
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✏(x, y, t) = ✏c + �(y) cos[⌦t+ �(x)] S12 ⇠ e�i� S21 ⇠ e+i�6=

S12 = 0

�(x) =
!in

c
x (sin ✓i � sin ✓r)

• Modulating the real part only

Ø Modulating both the real and imaginary parts

)

✓r = 15 deg

✓i = 0 deg

6=✏(x, y, t) = ✏c + �(y) {cos[⌦t+ �(x)] + i sin[⌦t+ �(x)]}

!in = !2

!in = !1 !out = !2

!in = !1 !out = !2

S21 ⇠ e+i�)

!out = !1!in = !2

no output at !1

q STMM with linear phase distribution



Summary and future work
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q Electromagnetic nonreciprocity: a tricky subject!

q Coupled mode theory for nonreciprocal STMMs: asymmetric scattering 

matrix.  Dynamical (nonreciprocal) focusing and beam steering 

Our next steps in the theory developments:

q Paper in preparation

q Model and design suitable time-Floquet

meta-atoms for experiments on nonreciprocity

q Consider travelling wave perturbations                                                         

using Bloch-Floquet theory. Model STMM for experimental demonstration 

of nonreciprocal wavefront control with this type of perturbations

q Study other kinds of “abrupt” perturbations, e.g. “coding” STMMs

q Explore PT symmetric metasurfaces for wavefront control using gain/loss

n(x) = n0 + �n cos(KMSx+ !MSt)

✏(x, y, t) = ✏c + �(y) cos[⌦t+ �(x)]


